4,455 research outputs found

    Diving in Two Marine Lakes in Croatia

    Get PDF
    We describe the diving methods used for in-situ observations of the scyphozoan medusa, Aurelia sp., in two marine lakes on the island of Mljet, Croatia. Both lakes have a strong pycnocline at approximately 15 m. During this study (May, 2004) surface temperature was about 20o C; bottom temperature about 10o C. Visibility was 15 m to 30 m. Tide and currents were negligible. A dense resident population of Aurelia sp. and a predictable environment made this an ideal study site. Aurelia was most abundant in mid-water around the pycnocline. There were several dive objectives: specimen collection for laboratory analysis, population census, discrete plankton tows and direct observation of flow around swimming medusae. We used several methods for maintaining our orientation underwater including working from an anchor line, towing a tethered buoy, and use of a blue water rig. Because the environment was relatively benign we allowed the rig to drift free while the boat was standing by at a short distance. Often a tether was not required. This plan allowed the most freedom and provided an excellent reference throughout the dive

    Seasonal variability in ichthyoplankton abundance and assemblage composition in the northern Gulf of Mexico off Alabama

    Get PDF
    Multiyear ichthyoplankton surveys used to monitor larval fish seasonality, abundance, and assemblage structure can provide early indicators of regional ecosystem changes. Numerous ichthyoplankton surveys have been conducted in the northern Gulf of Mexico, but few have had high levels of temporal resolution and sample replication. In this study, ichthyoplankton samples were collected monthly (October 2004–October 2006) at a single station off the coast of Alabama as part of a long-term biological survey. Four seasonal periods were identified from observed and historic water temperatures, including a relatively long (June–October) “summer” period (water temperature >26°C). Fish egg abundance, total larval abundance, and larval taxonomic diversity were significantly related to water temperature (but not salinity), with peaks in the spring, spring–summer, and summer periods, respectively. Larvae collected during the survey represented 58 different families, of which engraulids, sciaenids, carangids, and clupeids were the most prominent. The most abundant taxa collected were unidentified engraulids (50%), sand seatrout (Cynoscion arenarius, 7.5%), Atlantic bumper (Chloroscombrus chrysurus, 5.4%), Atlantic croaker (Micropogonias undulatus, 4.4%), Gulf menhaden (Brevoortia patronus, 3.8%), and unidentified gobiids (3.6%). Larval concentrations for dominant taxa were highly variable between years, but the timing of seasonal occurrence for these taxa was relatively consistent. Documented increases in sea surface temperature on the Alabama shelf may have various implications for larval fish dynamics, as indicated by the presence of tropical larval forms (e.g., fistularids, labrids, scarids, and acanthurids) in our ichthyoplankton collections and in recent juvenile surveys of Alabama and northern Gulf of Mexico seagrass habitats

    Omnivory by the Small Cosmopolitan Hydromedusa Aglaura Hemistoma

    Get PDF
    We investigated the feeding of the small hydromedusa, Aglaura hemistoma (bell diameter \u3c 4 mm), to determine if it occupies a trophic position similar to that of large medusae. Feeding was examined using gut-content analysis of preserved and unpreserved medusae and by analyzing prey-capture events using microvideographic techniques. Analysis of gut contents and prey-capture events revealed that A. hemistoma fed heavily on protistan prey and that it possessed a prey-capture mechanism, specifically a feeding current,that is effective at entraining and capturing protists with low motility. We suggest that many species of small hydromedusae possess prey-capture mechanisms adapted to capture small protistan prey and that many of these small hydromedusae feed omnivorously on microplanktonic prey. The trophic roles of small hydromedusae in different systems are not understood and more studies are needed. However, based on their often high abundances and the cosmopolitan nature, if small hydromedusae are primarily omnivores, they need to be considered when estimating the impact of zooplankton on primary production and, more generally, protistan community dynamics

    Orientation and swimming mechanics by the scyphomedusa Aurelia sp. in shear flow

    Get PDF
    Author Posting. © American Society of Limnology and Oceanography, 2006. This is the author's version of the work. It is posted here by permission of American Society of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 51 (2006): 1097-1106.Individual Aurelia sp. medusae were distributed around regions of current shear associated with vertical density discontinuities during three vertically towed camera profiles in the northern Gulf of Mexico. Along shear regions, medusae oriented non-randomly and swam horizontally, forming distinct layers. To identify the mechanisms by which Aurelia maintain horizontal orientation in velocity shear, jellyfish swimming mechanics were studied in laboratory kreisel tanks at three shear rates (0.10, 0.21, and 0.34 s-1) and a no flow control. Medusae counteracted the rotational effect of velocity shear by pulsing asymmetrically. Specifically, medusae held a position against shear flow by maintaining a higher bell margin angle on the side of the medusa in higher flow velocity. Swimming asymmetry increased with shear and, as a result, the ratio between bell angles on opposing flow sides was significantly different from the control at all shear rates. Contractions were initiated on the lower flow side of the bell in all cases and at the highest shear rate, the low flow side of the bell contracted 0.2 s before the high flow side. Laboratory observations confirm that patches of jellyfish at vertical discontinuities may be the result of an active behavioral response to vertical velocity shear. Layers of jellyfish formed via an active behavioral response to shear may improve prey encounter or fertilization success.The research was supported by the National Science Foundation (OCE 9733441)

    Linking human well-being and jellyfish: Ecosystem services, impacts, and societal responses

    Get PDF
    William H. Graham et al.© The Ecological Society of America. Jellyfish are usually perceived as harmful to humans and are seen as >pests>. This negative perception has hindered knowledge regarding their value in terms of ecosystem services. As humans increasingly modify and interact with coastal ecosystems, it is important to evaluate the benefits and costs of jellyfish, given that jellyfish bloom size, frequency, duration, and extent are apparently increasing in some regions of the world. Here we explore those benefits and costs as categorized by regulating, supporting, cultural, and provisioning ecosystem services. A geographical perspective of human vulnerability to jellyfish over four categories of human well-being (health care, food, energy, and freshwater production) is also discussed in the context of thresholds and trade-offs to enable social adaptation. Whereas beneficial services provided by jellyfish likely scale linearly with biomass (perhaps peaking at a saturation point), non-linear thresholds exist for negative impacts to ecosystem services. We suggest that costly adaptive strategies will outpace the beneficial services if jellyfish populations continue to increase in the future.Funding for the National Center for Ecological Analysis and Synthesis comes from National Science Foundation Grant DEB-94-21535, the University of California at Santa Barbara, and the State of CaliforniaPeer Reviewe

    Were Multiple Stressors a \u27Perfect Storm\u27 for Northern Gulf of Mexico Bottlenose Dolphins (Tursiops truncatus) in 2011?

    Get PDF
    An unusual number of near term and neonatal bottlenose dolphin (Tursiops truncatus) mortalities occurred in the northern Gulf of Mexico (nGOM) in 2011, during the first calving season after two well documented environmental perturbations; sustained cold weather in 2010 and the Deepwater Horizon oil spill (DWHOS). Preceding the stranding event, large volumes of cold freshwater entered the nGOM due to unusually large snowmelt on the adjacent watershed, providing a third potential stressor. We consider the possibility that this extreme cold and freshwater event contributed to the pattern of perinatal dolphin strandings along the nGOM coast. During the 4-month period starting January 2011, 186 bottlenose dolphins, including 46% perinatal calves (nearly double the percentage for the same time period from 2003-2010) washed ashore from Louisiana to western Florida. Comparison of the frequency distribution of strandings to flow rates and water temperature at a monitoring buoy outside Mobile Bay, Alabama (the 4th largest freshwater drainage in the U. S.) and along the nGOM coast showed that dolphin strandings peaked in Julian weeks 5, 8, and 12 (February and March), following water temperature minima by 2-3 weeks. If dolphin condition was already poor due to depleted food resources, bacterial infection, or other factors, it is plausible that the spring freshet contributed to the timing and location of the unique stranding event in early 2011. These data provide strong observational evidence to assess links between the timing of the DWHOS, other local environmental stressors, and mortality of a top local predator. Targeted analyses of tissues from stranded dolphins will be essential to define a cause of death, and our findings highlight the importance of considering environmental data along with biological samples to interpret stranding patterns during and after an unusual mortality event

    Imaging of the Stellar Population of IC10 with Laser Guide Star Adaptive Optics and the Hubble Space Telescope

    Get PDF
    We present adaptive optics (AO) images of the central starburst region of the dwarf irregular galaxy IC10. The Keck 2 telescope laser guide star was used to achieve near diffraction-limited performance at H and K' (Strehls of 18% and 32%, respectively). The images are centered on the putative Wolf-Rayet (W-R) object [MAC92]24. We combine our AO images with F814W data from HST. By comparing the K' vs. [F814W]-K' color-magnitude diagram (CMD) with theoretical isochrones, we find that the stellar population is best represented by at least two bursts of star formation, one ~ 10 Myr ago and one much older (150-500 Myr). Young, blue stars are concentrated in the vicinity of [MAC92]24. This population represents an OB association with a half-light radius of about 3 pc. We resolve the W-R object [MAC92]24 into at least six blue stars. Four of these components have near-IR colors and luminosities that make them robust WN star candidates. By matching the location of C-stars in the CMD with those in the SMC we derive a distance modulus for IC10 of about 24.5 mag. and a foreground reddening of E(B-V) = 0.95. We find a more precise distance by locating the tip of the giant branch in the F814W, H, and K' luminosity functions. We find a weighted mean distance modulus of 24.48 +/- 0.08. The systematic error in this measurement, due to a possible difference in the properties of the RGB populations in IC10 and the SMC, is +/- 0.16 mag.Comment: 13 pages, 13 figures, ApJ in pres

    Change and Recovery of Coastal Mesozooplankton Community Structure During the Deepwater Horizon Oil Spill

    Get PDF
    The response of mesozooplankton community structure to the Deepwater Horizon oil spill in the northern Gulf of Mexico was investigated using data from a long-term plankton survey off the coast of Alabama (USA). Environmental conditions observed in the study area during the oil spill (2010) were compared to historical observations (2005–2009), to support the contention that variations observed in zooplankton assemblage structure may be attributed to the oil spill, as opposed to natural climatic or environmental variations. Zooplankton assemblage structure observed during the oil spill period (May–August) in 2010 was then compared to historical observations from the same period (2005–2009). Significant variations were detected in assemblage structure in May and June 2010, but these changes were no longer significant by July 2010. The density of ostracods, cladocerans and echinoderm larvae were responsible for most of the differences observed, but patterns differed depending on taxa and months. Many taxa had higher densities during the oil spill year, including calanoid and cyclopoid copepods, ostracods, bivalve larvae and cladocerans, among others. Although this result is somewhat surprising, it is possible that increased microbial activity related to the infusion of oil carbon may have stimulated secondary production through microbial-zooplankton trophic linkages. Overall, results suggest that, although changes in zooplankton community composition were observed during the oil spill, variations were weak and recovery was rapid
    • …
    corecore